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Abstract 

 

 The trade-off between accuracy and speed is a re-occurring dilemma in many 

facets of military performance evaluation.  This is an especially important issue in the 

world of ISR.  One of the most progressive areas of ISR capabilities has been the 

utilization of Unmanned Aircraft Systems (UAS).  Many people believe that the future of 

UAS lies in smaller vehicles flying in swarms.  We use the agent-based System 

Effectiveness and Analysis Simulation (SEAS) to create a simulation environment where 

different configurations of UAS vehicles can process targets and provide output that 

allows us to gain insight into the benefits and drawbacks of each configuration.  Our 

evaluation on the performance of the different configurations is based on probability of 

correct identification, average time to identify a target after it has deployed in the area of 

interest, and average time to identify all targets in an area. 
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USING AGENT-BASED MODELING TO EVALUATE UAS BEHAVIORS IN A 
TARGET-RICH ENVIRONMENT 

 
 

I. Introduction 
 

Background 

 A UAV (Unmanned Aerial Vehicle) is defined as an unpiloted aircraft capable of 

controlled, sustained, level flight and powered by a jet or reciprocating engine.  This 

refers to either an unmanned aircraft that flies while being remotely controlled by an 

operator or an aircraft that flies autonomously without human direction.  Today, the term 

UAS (Unmanned Aircraft System) is more common to reflect the fact that these vehicles 

are not stand-alone aircraft, but rather use a network of supporting elements such as 

ground stations.  There are several benefits to using UAS aircraft in today’s military.  

Perhaps most importantly is that there is no risk of loss of life when using a UAS.  

Secondly, because they are unmanned, they are no longer confined to restrictions related 

to humans.  This means that UAS aircraft can fly at much higher levels, can perform 

much riskier CONOPS, and can in general perform much riskier missions than manned 

aircraft.   

 The roots of the UAS concept come from the same place as that of the cruise 

missile; they were developed as remote aerial directed munitions.  The first successful 

flight of one of these unmanned vehicles was in 1918 by the Curtiss/Sperry Aerial 

Torpedo.  Since then, there have been several models developed, but the biggest 

explosion of UAS development came during the Second World War  The UAS aircraft 

developed during this time were primarily used for anti-aircraft gun training and to fly 

attack missions.  It wasn’t until after World War II that people started applying jet 



 

2 
 

engines to UAS vehicles.  In 1955, the US Navy bought a UAS developed by Beechcraft.  

However, none of these were used like the UAS vehicles of today.  In the 1980s and 90s, 

the US military’s interest in UAS vehicles grew and the technology followed.  Although 

roles traditionally focused around surveillance, some models (Predator MQ-1) were 

equipped with weapons (AGM-114 Hellfire Air to Ground Missiles).  As interest in UAS 

vehicles grow, it is inevitable that its roles will expand as well.  (Newcome, 2004) 

 Currently, UAS vehicles support twelve missions; reconnaissance, signals 

intelligence, mine countermeasures, target designation, battle management, 

chemical/biological reconnaissance, counter cam/con/deception, electronic warfare, 

combat search and rescue, communications/data relay, information warfare, and digital 

mapping (Gooden, 2000).  It is not unreasonable to expect that UAS vehicles may one 

day replace all roles currently supported by manned aircraft. 

 Before any further detail is discussed, it is important to understand how a model is 

defined.  According to the Air Force Modeling and Simulation Resource Repository, a 

model is “A physical, mathematical, or otherwise logical representation 

of a system, entity, phenomenon, or process.” (Gansler, 1998).  Another definition is 

offered by Law & Kelton, who say that a model is a representation of a system to gain 

insight into how the system behaves or to predict future behavior (Law, 2000).  They also 

note that models can be either physical or mathematical.  Physical models represent the 

target system in form and are used primarily to convey information about a system’s 

physical aspects.  Mathematical models are models that represent a system by 

characterizing certain parameters of the system using equations.   
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 Mathematical models are further broken-down into either analytical solutions or 

simulations.  Analytical solutions can be calculated without computer aid using statistical 

techniques.  Simulations, on the other hand, are typically used for problems that involve 

many interactions making them too complicated to calculate using simple techniques.  

Another benefit of simulations is that knowing only the input parameters, you can often 

observe behaviors to better understand why the system is behaving the way it is.  This is 

where the real value in simulations lies; gaining insight into the behavior of a system 

using observable patterns, not just output values. 

 Combat models are one way in which analysts can observe the behavior of 

military systems.  Since the focus of our research will be on the behavior of UAS 

vehicles, using combat models is appropriate.  There are many different classifications of 

combat models depending on the scope of the model’s purpose.  Some models focus on 

modeling the detailed interaction of agents.  These models are typically used to describe 

the strengths and weaknesses of single players interactions and are referred to as 

engagement models.  One layer up in complexity (and one layer down in fidelity) are 

mission level models.  These models are typically a little broader than engagement 

models, focusing more on force vs. force scenarios where the details of single agent 

engagements aren’t so important, and can be sacrificed for scenario efficiency, 

considering the increased complexity.  Above mission level models are campaign level 

models, which focus even less on individual interactions and more on broad results.  

Figure 1.1 shows the relationship between the different levels.  As you move down the 

pyramid, the more detailed the model becomes (higher resolution), but the fewer 

interactions that are actually modeled. 
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Figure 1.1 Hierarchy of Models (Miller, 2008) 

 

 Since we’re interested in observing UAS interactions/swarming methods, a 

mission-level model is most appropriate for our endeavors.   

 

Problem Statement / Research Objective 

 The objective of our efforts is to better understand which queing/swarming 

techniques would be most beneficial for various UAS vehicles to utilize in different 

scenarios.  Depending on how many UAS vehicles are available, and how large/target-

rich the environment is, different CONOPS may be better than others.  Our work is made 

in an effort to provide some better understanding of what governs these artifacts. 
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Research Focus 

 The focus of our research is to provide a guideline for what CONOPS are most 

appropriate for different situations (defined by area, threat, targets, etc).  Once we get a 

better understanding of this (based on simulations), we can apply our results to analyze 

past conflicts where UAS vehicles have been utilized and evaluate the CO-NOPS used in 

those operations.   

 System Effectiveness Analysis Simulation (SEAS) will be the combat model of 

choice for our efforts.  There are several reasons SEAS is preferred.  First, it is a user-

friendly simulation program.  Parameters and orders are logically named and easy to 

distinguish, making it easy to decipher the coding language.  SEAS also offers an 

extensive help file which is useful in both coding and debugging.  Secondly, it is a 

mission-level agent-based model.  This is appropriate when dealing with this kind of 

problem, because we are interested in the swarming behavior of groups of cooperative 

UAS vehicles, and we require coding and observation of the individual aircraft.  Third, 

SEAS has a simple graphical display that is useful in conveying information visually 

without being too flashy.  This is desired for our kind of analysis.  Fourth, SEAS has the 

processing capability to model the kind of scenario that will be required for analyzing 

UAS behavior.  It adequately models relationships between air, sea, ground, and space 

agents and their interactions.  Fifth, SEAS recently introduced new features into its new 

release (SEAS 3.7.1) that we would like to examine.  These features include a confusion 

matrix useful in assigning a probability of misidentification and road networks for 

modeling traffic. 
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Overview of Thesis 

 Chapter II will be comprised of reviews of existing literary works on related 

subjects.  These subjects include agent-based modeling, SEAS, and UAS CONOPS.  

Agent-based modeling has been used since the 1940s but didn’t become widely accepted 

until the 1990’s (Eamonn, 2008).  Since simulation and agent-based modeling have 

recently become popular within the operations research community, there is an 

abundance of information on agent-based modeling and its applications.  We can use 

lessons learned from previous applications to ensure proper execution of our study.  

SEAS is a specific agent-based model used by many Department of Defense agencies to 

evaluate systems effectiveness.  In Chapter II, we will look at some previous applications 

of SEAS, specifically in autonomous aerial vehicle based scenarios, and use these 

applications to better model our scenario.  We will also research traditional UAS 

CONOPS to ensure accurate representation within our model.   

 Chapter III describes how we modeled our scenario.  This includes what agents 

were present, what capabilities these agents had, what orders the agents had, and what 

assumptions we made.  Since combat modeling is subjective by nature, Chapter III will 

be highly detailed to ensure that the details of the model are conveyed adequately.   

 Chapter IV will discuss not only what statistics we chose to pull from our model, 

but also how we analyzed that data to make our eventual conclusions.  SEAS has a post-

processor designed to easily manipulate output from the model, so we will use that 

extensively.  If needed, it is also possible to extract the data to an excel file and 

manipulate them there using some simple VBA code since SEAS output files are comma 

delimited.   
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 Chapter V will outline our conclusions as dictated by the results outlined in 

Chapter IV.  We will also discuss ideas for future research and suggestions for 

applications of our results.   
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II. Literature Review 
 

Introduction 

 Modeling and Simulation has been used by analysts since the 40s.  Currently it is 

widely used by military branches, social sciences, biological sciences, and environmental 

sciences.  Later in this chapter, we will begin with the definition of agent-based modeling 

(ABM) and discuss both how it was used in the past, and how it is used today.  The next 

part will delve into some of the specific strengths and weaknesses of the particular model 

chosen for the analysis.  Lastly, past studies that have been focused on ABM, UAS 

behaviors, or both will be discussed and applicable aspects will be expounded upon.   

 

Agent-based Modeling 

 ABM has been defined many different ways by many different analysts.  The 

creators (SPARTA, Inc.) of the ABM (SEAS) we will use for our study define it as an 

environment in which  

  "…complex, real-world systems are modeled as a 
  collection of autonomous decision making entities, called 
  agents. Each agent individually assesses its situation and 
  makes decisions based upon its own set of rules. Agents 
  may execute various behaviors appropriate for the system 
  they represent - for example, sensing, maneuvering, or 
  engaging" (SPARTA, 2005) 
 
 It is also important to understand how an agent is defined.  In his book, J. Ferber 

defines an agent as a physical or virtual entity 

  - that is capable of acting in an environment; 
  - that can communicate directly with other agents; 
  - that is driven by a set of tendencies (has autonomy); 
  - which possesses resources of its own; 
  - that is capable of perceiving its environment; 
  - that has only a partial representation of this environment; 
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  - which possesses skills and can offer services; 
  - that may be able to reproduce itself; and 
   
 
  - whose behavior tends towards satisfying its objectives, taking account 
    of the resources and skills available to it and, depending on its 
    perception, its representations and the communications it receives. 
     
 Multi-agent systems must include: 
  - an environment; 
  - a set of objects that can be perceived, created, destroyed and modified 
    by the agents; 
  - an assembly of agents; 
  - an assembly of relations linking the agents; 
  - an assembly of operations enabling agents to perceive, produce, 
    consume, transform, and manipulate objects; and 
  - operators whose task is to represent the application and reaction to 
    these operations. 
   
 Perhaps the most important characteristic of an ABM is the existence of emergent 

behavior.  We have already noted that ABM’s are comprised of agents that can interact 

with each other.  Emergent behavior is when many (even simple) interactions take place, 

often times complex patterns or behaviors not explicitly programmed into the agents 

appear in the model as a result of the interactions and resource usage.  This is considered 

one of ABM’s greatest strengths because it helps us understand complex system 

characteristics that are often indistinguishable using other mathematical methods.  "This 

ability to possess alternate behaviors enables the agents to adapt over time beyond their 

initial state and may result in unexpected system behavior" (Price, 2003).  Because of this 

phenomenon, the agent’s eventual behavior may not have even initially been thought 

feasible by the programmer or analyst.   

 So far emergent behavior has been made possible because of three things; agent 

interaction, environment interaction, and resource interaction.  It is important to 
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understand that not all of these need to be present in order for emergent behavior to exist.  

Any one of these three interactions can lead to emergent behavior. 

  
Overview and History 

 In the late 1940s, mathematician John von Neumann conceptualized a machine 

that could in effect “clone” itself.  The idea was that this single machine could be 

programmed to construct another machine identical to itself.  Upon completion, the 

machine would give the newly created machine the same set of instructions that it had 

used to create it, enabling the new machine to create a replica of itself also.  These were 

called Von Neumann machines, and although impossible to physically create, von 

Neumann drafted the concept down as a grid in which one cell had the capability to 

“live” and behave according to its instructions (i.e. reproducing in adjacent cells).  The 

resulting device became known as cellular automata.  (Boccara, 2003) 

 As interest in cellular automata grew, people began considering what other 

complex system behaviors this kind of simple simulation could represent.  The interest 

eventually lead Craig Reynolds to examine emerging behavior practices in a model that 

represented the flocking of birds (he called them “boids”).  This model was the first to 

make use of actual individual agents.  The model was expected to demonstrate that the 

boids would eventually flock together, but what was surprising was the resulting 

movement of the flock of boids.  In this way, Reynold’s model is considered the first to 

demonstrate emergent behavior.  (Reynolds, 1987) 
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Applications of Agent-based Models 

 Agent-based Modeling has been used across several fields of study, as it is 

flexible enough to represent many different kinds of systems.  Some of these fields 

include military application, social sciences, biological sciences, oceanography, and 

traffic management.  The fact that an agent can be modeled in so many ways makes it 

useful in different ways to each of these fields.  This review of some applications of 

ABM will consist primarily of military applications, since that is the field in which we 

will be conducting our analysis.  (Sanders, 2003) 

 

System Effectiveness and Analysis Simulation 

 System Effectiveness and Analysis Simulation (SEAS) is a government owned 

ABM developed by SPARTA, Inc and will be used as the primary tool in this study.  

SEAS is powerful in that joint war fighting scenarios can be represented on a variety of 

different scales to evaluate the effectiveness of various system designs, architectures, and 

concept of operations (CONOPS) (SPARTA, 2005). 

Figure 2.1 shows how many of the agents interact with each other and what kind of 

objects agents can use to effect their environments. 
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Figure 2.1 SEAS Simulated Environment 

 

 There are several reasons that SEAS will be used for our analysis.  First, it is an 

agent based model and has the capability to model agent behaviors that are accurate 

enough for the systems being studied.  Secondly, SEAS has a user-friendly post-

processor that can be used to quantify the measures of performance demonstrated in our 

model.  Thirdly, SEAS is an accepted model included in the Air Force’s Standard 

Analysis Toolkit.  This means it has been verified and validated as a model deemed 

acceptable for Air Force use.   

 

Benefits and Limitations of Agent-based Models 

 One of the major benefits of using agent-based models is that they cost very little 

to create and execute.  When performing analysis on major systems (especially combat 

scenarios), physically representing the pieces of the system of interest can be difficult and 
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costly.  Exercises or wargames both require sufficient equipment and manpower to 

represent the system.  Simulations, on the other hand, are 100% constructed, meaning 

that all manpower and equipment are virtually represented by agents and objects within 

the model.   

 Another benefit is that often times the model is easily modified for multiple case 

runs.  In this way, a model can be tested several times for accurate representation of the 

system before final runs are executed.   

 Another benefit of ABM is the capability to represent emergent behavior.  

Emergent behavior is patterns or behaviors that aren’t explicitly modeled in the agents 

that make up the scenario.  Often times, these emergent behaviors represent system 

characteristics that would otherwise be missed by other analysis techniques. 

 One of the major criticisms of ABM is that although a programmer can design an 

agent to behave in any kind of manner that they wish, they can not program an agent to 

“think” on its own.  Therefore the analyst must be extremely robust in how they model 

behaviors as to ensure that important interactions are simulated realistically.  Modeling 

only those interactions that are important is a method of abstraction.  Abstraction is 

defined as the process of reducing the details of a concept to only those important to a 

particular purpose. 

 Although it is important to choose a tool that is designed to answer the kind of 

problem that the analyst is facing, agent-based modeling is becoming more and more 

popular as a robust tool that can answer a variety of problems.  As agent-based models 

become more powerful and more robust, ABMs will continue to become more popular.  

(SPARTA Inc., 2005) 
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Previous Research 

 Since we have an idea of what tool we will be using for our research, we will first 

examine previous studies using this tool (SEAS).  USAF Captain Jeffrey Rucker’s thesis 

involved a SEAS scenario with Satellites queuing UAS aircraft to provide constant 

surveillance until F16s could be queued to destroy them.  Special attention is paid to how 

targets are generated.  Rucker’s sponsor specified that targets were to be able to be 

generated by 2 separate methods (the particular method to be specified before the runs); 

one being that targets were randomly generated, and another that targets were read and 

generated from locations listed on an external txt file.  Rucker found a way to implement 

both, using SEAS’ programming language and flags for which particular method to use.  

However, it was determined that using random generation for all runs would introduce 

too much variance into the data, and using targets generated from a file would introduce 

correlation in the runs and questions on randomness.  Rucker’s solution was the use of 

SEAS’ TPL (Tactical Programming Language) to specify that on the first run, targets 

should be randomly generated within the TAO (Tactical Area of Operation) which means 

redrawing a random location when one is generated outside the TAO, then written to a 

file and re-used for the remainder of the runs.  This reduces the variance between runs, 

and ensures randomness in the generated locations of the targets.  (Rucker, 2006) 

 There have been many papers, journal articles, and thesis’s published concerning 

both agent-based models and complex cooperative UAS behavior programming.  When 

addressing this subject, there are a couple topics necessary for discussion.  One of these is 

swarm intelligence. 
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 Swarm intelligence is a behavior characteristic that is expected to be observed in 

our research.  Swarm Intelligence can be defined as “the study of collective intelligence, 

originally exhibited by large groups (or swarms) of animals, usually insects such as ants 

and bees.” (Karim, 2004).  In swarms of non-living agents, the individual members of the 

swarm are unaware of their position in the swarm or that the macro-behavior is even 

happening at all.  The group’s behavior is not directly coded in the individual agents’ 

often simplistic behavioral code.  However, this is not to say that the agents can not be 

programmed to be aware of certain environmental conditions that may influence their 

behavior within the swarm.  The cognitive level of the agents is often limited only to the 

time constraints and patience of the programmer.  As a result, emergent behavior can be 

taken advantage of by the individual agents (if their behaviors are detailed enough) to 

perform their tasks better and faster. 

 Ryan, Zennaro, Howell, Sengupta, and Hendrick write a comprehensive overview 

of emerging results in cooperative UAS control.  They note that cooperative behavior in 

UAS vehicles allows for more agents to be controlled by a single user.  They also note 

that cooperative behavior is beneficial in areas such as collision and obstacle avoidance.  

Obstacle avoidance is done in one of two ways; either each agent reports its location and 

path discrepancies are de-conflicted by the controller, or in the case of autonomous UAS 

vehicles, an object is detected and behaviors are implemented to avoid collision.  In each 

case, some kind of forward detection is beneficial, especially in areas where flight-plans 

may include low-level canyon navigation, where there isn’t a second object with similar 

programmed behaviors.  (Ryan et al., 2004) 
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 Ryan, Zennaro, Howell, Sengupta, and Hendrick also discuss communication 

issues, both in air-to-ground cases and in air-to-air cases.  In air-to-ground cases, the 

coverage area is generally limited by line-of-sight, long-range communications.  Aircraft-

to-aircraft communications run into problems in that it has been difficult to find an omni-

directional antenna with lower power requirements and high bandwidth capabilities.  

(Ryan et al., 2004) 

 One of the cases that Ryan, Zennaro, Howell, Sengupta, and Hendrick mention 

deals with two different ways of modeling flocking formation flying.  In the first case, 

Murray and Olfati-Saber use graph theory as a method to simulate a group of cooperating 

agents.  When these agents encounter an object, a structural net represents the interaction 

between all agents, behaving to ensure obstacle avoidance.  In the second case, a genetic 

algorithm is used to evaluate parameters for neighbors, obstacles, and the target.  Then 

the two best designs are evaluated in order to avoid degradation of performance in the 

next generation.  (Ryan et al., 2004) 

 Data Fusion is a term used to reference “… a multilevel, multifaceted process 

dealing with the automatic detection, association, correlation, estimation, and 

combination of data and information from multiple sources.”  (U.S. DoD, 1991)  

Advantages of data fusion include improving signal-to-noise ratio in order to improve 

detection accuracy and to acquire more data than is obtainable from a single sensor.  In 

our case, this means using the information acquired by multiple agents and multiple 

sensors in an automated algorithm for sorting and classifying the targets.  We will have 

data being shared between all local UAS vehicles in the scenario.  Then an algorithm will 

be used to determine the optimal queuing of the UAS vehicles based upon the data fusion 
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results.  There are also different levels at which data fusion can be done.  We will model 

it as an automated process of decision-level fusion.  Decision level fusion is the process 

in which data is shared regarding the confidence that each system maintains regarding a 

target’s identification (as opposed to raw sensor data fusion or feature level fusion).   

 There are several methods for data fusion.  Four methods discussed in Dongseob, 

Shin, Shim and Hung’s paper are Bayes Theory, Dempster-Shafer Theory, Heuristical 

methods, and Fuzzy Set Theory.  According to the authors, it was determined that Fuzzy 

Set Theory worked the best in correctly identifying airborne targets.  Their data fusion 

involved two stages.  The first stage was identifying whether the aircraft was a friend or 

foe.  To determine this, they used known flight scheduling data and classified based on 

whether or not the aircraft had a schedule or not.  The second stage was to identify the 

particular aircraft.  To do this, they used data on the aircraft’s speed, size, and whether or 

not it made a sudden appearance.  Although they found Fuzzy Theory to be the best in 

identifying the correct type of aircraft, they noted that the next step was to use the outputs 

from each method and the best assignment of values for each method in order to make 

them more accurate.  (Dongseob et al., 2005) 

 Godfrey, Cunningham, and Knutsen do a study on the negotiation mechanisms for 

autonomous, distributed coordination of surveillance tasks.  In their research, they use 

several methods of target swapping for UAS vehicles.  These methods include varying 

the algorithm for swapping (greedy vs. cooperative) and varying the amount of 

information shared by the agents.  First, Godfrey, Cunningham, and Knutsen examine the 

Greedy Algorithm.  This dictates that a proposing UAS goes through his list and picks a 

target, evaluates the benefit to the proposing UAS for a target swap with each target on 
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every other local UAS, then sorts the swaps in order of benefit to the proposing UAS.  

After a sorted list is generated, the proposing UAS goes down the list, proposing each 

swap with the other UAS vehicles in the scenario.  Each UAS receiving a proposal 

evaluates whether the swap is beneficial to them.  If it is, that UAS accepts the swap and 

the proposing UAS stops processing its list.  This is a “greedy” algorithm because both 

the proposing UAS and the receiving UAS have to benefit in order for there to be a swap.  

Because of this, swaps that are more beneficial to the overall system may be rejected for 

a less beneficial swap.  Also, this algorithm requires a large amount of processing (since 

proposing UAS vehicles seek acceptance from every other UAS in the scenario).  Lastly, 

this is a one-to-one swapping method (meaning a UAS target list doesn’t grow or shrink 

over time).  (Godfrey et al., 2005) 

 The other three methods mentioned by Godfrey, Cunningham, and Knutsen are 

considered “cooperative target swapping” in that the value of a swap is judged on the 

benefit to the system as opposed to being evaluated on each end of the swap.  Because of 

this, a UAS may accept a swap that is not beneficial to it, because an overall benefit to 

the system exists.   

 The first cooperative target swapping method is the Cooperative Even strategy.  

This method is a minor alteration of the Greedy Algorithm, except for the receiving UAS 

decides to accept or reject based on the benefit to the system instead of the receiving 

UAS.   

 The second cooperative target swapping method is the Basic Push strategy.  This 

strategy dictates that the proposing UAS tries to push targets that are furthest from it to 

the UAS that is closest to the target.  This strategy is not one-to-one; the pushing UAS 
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requires nothing in return for its push.  Potential receiving UAS vehicles accept or reject 

the new target based on benefit to the system.   

 The third cooperative target swapping method is the Advance Pull strategy.  In 

this method, a receiving UAS vehicle proposes to take another UAS vehicle’s target 

based on calculated system benefit.  This is another method that is not one-to-one; the 

pulling UAS isn’t required to sacrifice one of its targets for the newly acquired one.  This 

method is considered “advanced” because the pulling UAS calculates beforehand 

whether or not the target’s UAS would accept or reject the donation based marginal 

benefits before it decides to propose the transfer.   

 Godfrey, Cunningham, and Knutsen end their study by concluding that local 

agent optimization can result in satisfactory results from UAS vehicles.  They also show 

that when UAS vehicles are cognitive of system goals (and not just local goals) and share 

a greater amount of information, they can quickly converge to a much more efficient 

system solution.  They note that “…cooperative strategies that allow uneven swaps 

enable UAS vehicles to exploit target clustering to further improve the system solution, to 

preserve solution quality as the number of targets increases, and to adapt quickly to 

changes in the number of UAS vehicles and targets in the environment.” 

 

Conclusion 

 As seen through reviewing the previous work on the subjects of both ABM and 

UAS, there has been much progress in both areas.  In regards to ABM, we plan to 

examine aspects that are new to the latest version of SEAS.  In regards to UAS, our 

research will go down a different path in relation to those described above.  Our research 



 

20 
 

will be focused on the identification accuracy vs. time trade-off compared to swarming 

vs. independent UAS configurations.  Because we explore a new area in both agent-based 

modeling using SEAS and ways to examine swarming configurations, our research is 

valuable to both subjects. 
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III. Methodology 
 
Introduction 

 In this section, we go through the steps in achieving a complete scenario capable 

of providing the results we require using the SEAS agent based model.  Explaining the 

code and the logic behind each agent will provide a basic understanding of how the 

model serves as an abstraction of the real world.  We will begin by discussing some 

background information on the scenario, followed by some discussion on our chosen 

Measures of Performance (MOP), verification, validation, and ending with some pseudo-

code for some of the more complicated parts of the scenario.   

 A “scenario” is a theoretical description of circumstances including who, what, 

when, where, why, and how.  We will use the agent-based model SEAS to represent a 

specific scenario in a combat model.  We create the modeled representation of the 

scenario using SEAS-specific programming code referred to as tactical programming 

language (TPL).  This code defines all aspects of the scenario and tells the model how to 

perform.  The file containing the TPL is referred to as the warfile.  SEAS reads in the 

warfile (and any associated Include files specified by the warfile) to determine the model.  

When completed, our warfile will be used to determine the tradeoff of two single UAS 

vehicles vs. four less-capable swarming UAS vehicles for a specific scenario of interest 

in terms of both accuracy and identification time. 
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Scenario Background  

 In 2006, Captain Jeffrey Rucker completed a thesis sponsored by Air Combat 

Command (ACC) in which SEAS was used to model the significance of several pieces of 

a communication chain between area satellites and theater UAS vehicles.  His scenario 

involved agents associated with either a red side or a blue side.  Red SCUD agents in the 

scenario would periodically come out of hiding, move within Iraq, and eventually attempt 

to fire a missile at the blue side’s AOC.   Blue satellites would detect these red SCUDs, 

send their target information to the blue side’s UAS vehicles in the area and the ground 

station.  The blue UAS vehicles would fly to the detected target, and watch it until the 

blue ground station could queue a blue aircraft in the appropriate area to destroy the 

target.  Capt Rucker ran a series of cases in which different agents were left out of the 

scenario.  Capt Rucker used the following as MOPs:  

1.  The number of initial target detections, by any sensor, within two hours of 

  the first target detection. 

2.  The proportion of targets destroyed before being able to fire. 

3.  The proportion of targets destroyed by the end of the 24-hour period of 

  operations. 

4.  Which Blue Force agent detected which target and at what time did the 

  detection occur? 

  Captain Rucker’s design of experiments is shown below. 
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Table 3.1 Captain Rucker’s Design of Experiments 

 

 

 In his thesis, Captain Rucker describes in detail both how he constructed his 

scenario and where he obtained TPL code that he modified to fit his scenario.  This 

includes sample warfiles included in the distribution of SEAS and prior work done by 

AFRL.  Specifically, the UAS vehicles in Captain Rucker’s thesis were modified from a 

previous AFRL study.  We used Captain Rucker’s scenario as a basis in constructing the 

warfile for this study. 

 

Measures of Performance  

 In this section we discuss our plan to establish quantifiable values associated with 

certain aspects of our scenario.  The aspects of our scenario that we wish to evaluate must 

be decided upon before the completion of the warfile to ensure appropriate data 

collection.  The quantifiable values we are discussing are referred to as Measures of 

Performance (MOP).  MOPs are specific and quantifiable.  This is important because 

they are typically used in an aggregated form to support Measures of Effectiveness 

(MOE) and answer higher-level critical issues. 

 Since our scenario involves UAS vehicle configurations and their effect on the 

identification of targets, we should ensure that we have a sufficient understanding of the 
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identification process.  Taylor (2000) describes the target identification process in four 

distinct steps. 

1. detection (target detected at such a level of 
resolution/discrimination that observer can distinguish an object of 
military interest that is foreign to the background in its field of 
view, e.g. distinguish a vehicle from a bush) 

 
2. aimpoint (target detected at such a level of 

resolution/discrimination that observer can distinguish an object by 
its class, e.g. a tracked vehicle versus a helicopter or a wheeled 
vehicle; observer can thus establish an aimpoint on the object) 

 
3. recognition (observer can categorize targets discriminated at 

aimpoint within a given class, e.g. recognize a tank versus an 
armored personnel carrier in the tracked vehicle class) 

 
4. identification (observer can distinguish between specific 

recognized target models, e.g. a T-72 tank versus a T-80) (Taylor, 
2000: 929) 

 

 These phases are distinguished by how well you can discriminate between the 

target and non-targets.  In our abstraction, the identification is a much more simplified 

process.  Since we are trying to minimize the amount of stochastic variables, the time of 

detection is equivalent to the time of identification (as soon as an object is seen by the 

sensor, an identification decision is made).   

 For our scenario, the main interest was the trade-off between identification time 

and accuracy.  To evaluate accuracy, we constructed several MOPs to help us quantify 

the worth of different sensor configurations.  Specifically, how much accuracy we 

lose/gain when we have identifications being made based on single UAS vehicle data vs. 

having a swarm of  four less-capable UAS vehicles.   

 One of the new upgrades to SEAS v3.7.1 is the Probability of Identification (PID) 

listing.  The PID listing in the TPL specifies to what probability a sensor mistakes a 
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target that it has already sensed for something else.  It’s important to distinguish between 

a Probability of Detection (PD) list and a PID list.  Below is an example of a PD list. 

 

 

 

Figure 3.2 Example PD Table 

 

 

 A PD table defines the probabilities for a specific sensor against a specific target.  

In the above examples, the sensor named “B_Sat_Sensor” detects an agent named 

“SCUD_TEL1” 100% of the time (as does “UAS vehicle_SAR1”, “UAS vehicle_SAR2”, 

“UAS vehicle_SAR3”, etc).  As defined here, these sensors act as definite range law 

devices.  A definite range law device is one that detects with 100% certainty any object 

of interest inside the range of its sensor, but cannot detect any object outside of this 

range.   

 One reason for defining these sensors as range law devices in our scenario is to 

narrow the stochastic elements down to the identification process.  Our study is focused 

on time vs. identification, and more random elements would add variance to our results.  

In a real-world study, this may be desired as real world sensors are not range law devices.  

However, for the sake of our study, and to narrow the variation outside of the areas of 

interest, our sensors will be defined as range law devices.  
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 Identification probability is very different from detection probability.  As above, 

we have set our sensor/target parameters as such to ensure 100% detection as long as the 

target is within the range distance.  However, we wish to specify specific values for 

identification probabilities.  A new upgrade in SEAS v3.7.1 allows us to do this.  Below 

is an example of a PID listing from a warfile. 

Figure 3.3 Example PID Table 

 

 

 The TPL list above shows that for the sensor “UAV_SAR3” targeting a target 

named “Decoy_TEL”, there is an 80% chance that it identifies it correctly (i.e. as a 

“Decoy_TEL”), a 5% chance that it identifies it as a “Friend_TEL”, a 5% chance that it 

identifies it as a “SCUD_TEL1”, etc.  Because all of our PD’s are set to 1.0 (i.e. 100%), 

the stochastic elements of our model are narrowed down to only include identification 

error.  Because our study involves using identification as an MOP, this new feature is 

something we will use extensively in our study.   



 

27 
 

 One of the MOP’s we are interested in is time.  In a scenario such as the one 

we’re working with (with time-sensitive targets), it is important to process (i.e. identify) 

targets as quickly as possible.  Therefore we wish to create MOPs that quantify the time 

aspect of each case.  For our scenario, we will create 6 time-related MOPs.  The first 

three time-related MOPs describe how long it takes for the UAS vehicles to make a 

identification decision on a target from the time the target deployed (became visible) in 

the scenario.  We will evaluate the minimum time, the average time, and the maximum 

time for these targets.   

 We also wish to evaluate the time to make identification decisions on all targets in 

the scenario.  Many of our cases have no variation in the targets’ deployment direction or 

location, making scenario completion time a useful MOP.  We will evaluate the 

minimum, average, and maximum times to process all targets in the scenario for each 

case. 

 The other MOP is the accuracy of target identification.  We described earlier how 

SEAS allows us to establish values for the probability of identification.  Our MOP will 

evaluate the identification output to both compare with the values we specified and to 

evaluate the trade-off with time.  This MOP categorizes the identification decisions made 

by target and assesses what percent were correct vs. incorrect vs. undetermined.  The 

threshold for identification decision in the second case is at least two of the four 

identifications are the same.  Because we are dictating the probability of correct vs. 

incorrect identification in our warfile, the statistics for the output should be close to the 

values we specify.  Furthermore, analysis using the input values is easily done using a 
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Binomial distribution.  However, we are also interested in comparing how the simulation 

performs given the input probabilities.  

 Now that we’ve established some MOPs, we will discuss about how we extract 

these from the combat model.  SEAS has built in output file formats that the user can 

enable to obtain reports on such things as detections, communication, and victims.  

However, for the MOPs we are interested in, the data provided by the built-in output file 

generation capability are insufficient.  Fortunately, one of the benefits of SEAS is the 

capability to write TPL code that dumps variables of interest into a text file.  An example 

of TPL code that takes advantage of this capability is shown below. 

 

 

Figure 3.4 Example Code to Write to Custom File 

 

 The first line of the above code creates an empty file named “debug.joe.”  The 

second line writes a string of desired variables separated by commas.  The purpose of 

separating the data using commas is to make post-processing (using Microsoft Excel) 

easier.  Because SEAS provides us with this capability, we can use SEAS to custom write 

files containing the data we are interested in while the scenario runs. 

 

Cases 

 Because we removed so much of the variance in our scenario, we had to decide 

what aspects of the scenario we wished to change.  The obvious variable was the UAS 

vehicle configuration.  We had two options for vehicle configuration.  First, was a swarm 
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of four UAS vehicles that flew together and tracked a single target simultaneously.  No 

member of the swarm could track another target until every member of the swarm had 

made an identification decision on the current target.   The other option was that a pair of 

UAS vehicles could fly independently (but still deconflicting if they happened to track 

the same target). 

 Our second variable was whether the targets were consistent in their deployment 

locations and movements across all runs for a single case.  One option was to choose 

random locations and movements at the beginning of each set of runs, and use that 

recorded data for every following run.  This would be beneficial in reducing variance 

across runs, but also establishes a risk of introducing a bias in the runs if the locations 

happened to be chosen in locations that would benefit one configuration over another.  

Therefore, we will run both options and compare to see if the constant cases are biased. 

 Our third variable is the size of the theater.  One option is to evaluate the northern 

1/3 of Iraq.  The other option is to evaluate the northern 2/3 of Iraq.  The two TAO sizes 

are shown below. 
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Figure 3.5.1 Small TAO Figure 3.5.2 Large TAO 

 

 Our fourth variable was to vary the number of targets that deploy (15 vs. 30).  

This was one way to determine how both the number of targets and the size of the area 

affect scenario processing times.  The complete list of the cases we ran is shown below. 

 

Table 3.6 List of Cases 

CASE
Swarm/Independent 

Configuration
Random/Consistent 

Target Locations Small/Large TAO Number of Targets
1 S R S 15
2 S R L 30
3 S R L 15
4 S C S 15
5 S C L 30
6 I R S 15
7 I R L 30
8 I R L 15
9 I C S 15

10 I C L 30
11 S R S 30
12 I R S 30  
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 From this point forward, we will use a notation with a single letter or number per 

option to represent a particular case.  For example, case 1 would be referred to as SRS15.  

The first letter represents whether the case is for a swarm or individual UAS 

configuration (S or I).  The second letter represents whether the case represents one 

where deployment locations were held constant for every run or whether it was randomly 

chosen at the beginning of every run (C or R).  The third letter represents whether we are 

using a small or large theater (S or L).  The fourth and fifth characters (number) 

represents how many targets are deployed for that particular case (15 or 30).   

 

Verification 

 Verification means ensuring the model was built to the specifications expected by 

the author (i.e. did we build the model correctly).  This step was accomplished through 

rigorous debugging/testing to ensure that what was happening within the model was what 

we expected to happen.  The SEAS software provides an extensive help file that was 

referenced many times in the design of the model to ensure that code was written 

correctly.  Often times an error would be displayed when syntax was incorrectly used, 

making verification easier.  In addition to the help file, the previously-mentioned SEAS 

capability to custom-write variables to an external file was crucial in the verification 

process of the model.  By writing variable values to an output file, the model has a 

transparent characteristic whereas the user can monitor why the agents are behaving as 

they are.  The debug function was also helpful, especially when monitoring an agent’s 

target list.   
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 One way to verify that our model is performing the way we expect it to is to 

compare PID value input vs. identification matrix output.  One of the cases we input in 

our model was one in which four separate UAS vehicles tracked objects, identified them 

as targets, and made identification decisions based upon their perception of the object.  

All of the cases we ran were examined to see if a significant difference existed between 

the expected identification matrix (based on PID input) and actual identification matrix.  

Below is one example of output where four separate UAS vehicles with probability of 

correct identification is .85 (and .0375 for each of the four remaining types of objects). 

 

Table 3.7 Output Identification Matrix 

DECOY FRIEND SCUD1 SCUD2 SCUD3
DECOY 0.77 0.04 0.10 0.07 0.02
FRIEND 0.02 0.89 0.07 0.01 0.01
SCUD1 0.04 0.03 0.81 0.03 0.08
SCUD2 0.01 0.01 0.04 0.89 0.04
SCUD3 0.06 0.08 0.02 0.02 0.82

IDENTIFIED AS

P
E

R
C

E
N

T

 

 

 The above shows probabilities that average an .836 probability of correct 

identification.  If we examine the values per run, we can use a student’s T test to evaluate 

whether this value is significantly different from the expected input value of .85.  The 

formula for the T statistic is  .  Using this formula, the resulting t 

statistic is .0483.  We are basing our t statistic off of 30 values (runs), so our threshold 

value is determined using 29 degrees of freedom.  Since t10,29 = 1.70, we fail to reject that 

the two values are significantly different. 
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 Another method of verification is our case comparisons between cases where 

targets deploy independently each run vs. cases where the targets deploy from the same 

location and move in the same directions every run.  If we determine that the two do not 

yield significantly different results, we can use the data from the consistent location cases 

since they have less inherent variance in them. 

 

Validation 

 The process of validating a model involves ensuring that the model adequately 

imitates the real life scenario it is meant to represent.  The purpose of validating a model 

is to ensure that the output is useful.  If a model fails to adequately represent a real life 

system, the output is not sufficient for use in analyzing the real-life scenario.  Banks 

(2004) describes two distinct purposes for the validation process:  

1. To produce a model that represents true system 
   behavior closely enough for the model to be used as a 
   substitute for the actual system for the purpose of 
   experimenting with the system, analyzing system 
   behavior, and predicting system performance; 
 

2. To increase to an acceptable level the credibility of the 
   model, so that the model will be used by managers and 
   other decision makers. 

 Since our study is more focused on the tradeoff between time and accuracy in 

UAS vehicles without naming specific platforms/sensors, ensuring that the parameters 

used for our systems are comparable enough to those found in operational systems is 

sufficient for the purpose of our study.  
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Model Design 

 Before we begin examining the different sections of the warfile code in detail, we 

will go over big-picture purposes of the model.  In our combat model, UAS vehicles 

deploy from a location outside of IRAQ and fly to a pattern location.  Once they arrive, 

they begin flying the perimeter of the theater of interest (northern Iraq).  While the UAS 

vehicles are flying the perimeter of the theater, five different types of objects (decoy 

scuds, friendly objects, and three different types of scuds) deploy from random locations 

in the theater.  Once they deploy, they move to different locations within the theater.  

These locations are determined randomly on the first run of the model, then that data is 

recorded and used for all subsequent runs.  Nine satellites are also present in the scenario.  

When a satellite is over the theater and a target is in view, the satellite takes the target 

sighting and passes it to the UAS vehicles.  The closest UAS vehicle takes the target 

sighting and moves to the target location.  When the UAS vehicle gets to the target’s 

location, it makes an identification decision on the target and removes the target from the 

scenario.  When all 15 targets (3 of each kind) have deployed, been identified, and 

removed from the scenario, the current run ends and the next one begins.  Some images 

depicting the identification process are shown below. 
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Figure 3.8.1 Targets in the Scenario, UAS Vehicles Unaware of Them 

 

Figure 3.8.2 Satellite Flies Overhead and Detects Targets in Theater 
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Figure 3.8.3 UAS Vehicles Fly to, Identify, and Remove Closest Target 

 

Figure 3.8.4 UAS Vehicles Return to Path, Awaiting the Next Target  

 

 The two cases for our study differ in the configuration/capabilities of the UAS 

vehicles.  In the first case, two UAS vehicles circle the perimeter of the theater.  When a 

potential target shows up on a UAS vehicle’s Local Target List (LTL), it checks if the 

other UAS vehicle is tracking the object.  If the object is already being tracked by the 

other UAS vehicle, the first UAS vehicle goes to the next target in its LTL.  If no non-
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targeted agent of interest is found in the area, it continues circling the perimeter of the 

theater.  If it finds an agent of interest, it flies to the agent’s location, makes an 

identification decision, and removes the target from the scenario.  Once it removes the 

agent from the scenario, the UAS checks for any other potential targets in the area, and 

appropriately either returns to the flight path or moves to the next target. 

 The second case differs in that four UAS vehicles stick together in formation to 

represent swarming behavior.  They perform as one UAS vehicle would in the first case, 

but when they get to a target, four independent identification decisions are made.  This is 

also different in that the capabilities (i.e. correct PID values) of these UAS vehicles range 

in values. 

 To determine capabilities, we’ll use a probability equation to determine an 

arbitrary set of grouped UAS vehicle capabilities.  Once we determine the overall 

probability of a successful identification for any given target, we can set our PID of the 

individual UAS vehicles in case 1 to that probability and we should get comparable 

results.  This will give us a starting point for our cases.   

 Setting the probabilities for correct identification of a given target type by the 

swarming UAS vehicles arbitrarily at {.62, .62, .62, .62} yields ~83% probability that at 

least two of the four UAS vehicles will correctly identify the object.  

P(Correct ID)   = (.62)(.62)(.62)(.62) + [4 * (.62)(.62)(.62)(1-.62)] +  

   [6 * (.62)(.62)(1-.62)(1-.62)] 

    = ~.8431 
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However, we also have to account for the possibility that two UAS vehicles correctly 

identify the object, and the other two identify it as the same incorrect thing.  The 

possibility of that happening is  

P(Undetermined)  = 4 * [(.62)(.62)(1-.62)(1-.62)] 

   = ~.0139 

Therefore, the probability of a correct identification without confusion (i.e. the other two 

or less identifications are not the same) is given by the equation below. 

P(Confirmed ID) = ~.8431 - .0139  

   = ~.8292 

 Therefore, setting the independent probabilities of successful identification for 

each of the UAS vehicles in case 1 to .83 should yield comparable results in terms of 

identification.  Running the above-described cases supports this.  For our research, we 

will set each UAS vehicle in the swarm to have a probability of correct identification 

equal to .62.  However, for the independent UAS vehicle cases, each UAS vehicle will 

have a probability of correct identification value of .75.  We base this on an assumption 

that because there are fewer vehicles in the independent cases (two vs. four), it is rational 

to compare two more capable independent UAS vehicles to four less capable swarming 

UAS vehicles. 

 Next we will examine the logic for the UAS agents.  Below is a shortened version 

of the orders for the UAS vehicles for case 1. 
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Figure 3.9 Case 1: Orders for UAS vehicles 

 

 The above code has three main sections within its code.  The line that states 

“While me->Status == 2” is the main loop of the code.  Status is a parameter describing 

whether the agent is alive or dead.  If an agent’s status is 2, that agent is alive in the 

model.  All code within the loop described above executes as long as the agent has not 

been killed.  The three main sections within the “alive” code can be described as finding 

a target, moving to the target, and identifying/removing the target. 
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 The “finding a target” part of the code within the UAS vehicle “alive loop” uses 

the local sensor as well as information passed from the satellites to find the closest 

candidate target.  If a candidate is found, the UAS vehicle evaluates whether the target 

has already been assigned to another UAS vehicle.  If it has, the UAS vehicle cycles 

through all targets on its list until it finds a candidate target that has not been assigned to 

another UAS vehicle.  Once an unassigned candidate target is found the next part of the 

code executes. 

 The “moving to the target” part of the code tells the UAS vehicle to move to the 

perceived location of the target.  If a target was spotted by a satellite, but left the 

satellite’s field of view (FOV) before the UAS vehicle could get to the target, the 

perceived location may not be the same as the actual location.  If the UAS vehicle gets to 

the perceived location of the target, but the target is not there, the target drops off the 

UAS vehicle’s target list after five minutes. 

 The “identifying/removing the target” part of the code specifies that if the UAS 

vehicle has reached the actual location of the target, it makes a determination of the 

target’s type, documents it, and removes the target from the scenario.  It is possible that 

the UAS vehicle gets to the target and loses it.  In this case, the UAS vehicle unassigns 

itself from the target (to make it a possible candidate for other UAS vehicles,), and 

documents that it has lost a target.  

 Below is the code for the UAS vehicles in case 2.  Recall that in this case, the 

UAS vehicles stay in formation and simultaneously make identification decisions. 
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Figure 3.10 Case 2: Orders for UAS vehicles 

 

 The above code can be examined in two separate parts.  Each agent only executes 

one of the two parts.  The first part of the code is defined as all code contained by the “If 

me->Ident != 1” statement.  Each UAS vehicle in this case has a separate identification 

number (one through five).  The first part is executed by three of the four UAS vehicle 

agents.  This part of the code is pretty simple.  Like the code described from case 1, the 

main part of this code is contained in a while loop.  While the three UAS vehicle agents 

with an identification value not equal to 1 are alive, they follow the leader UAS vehicle.  

If they’re at a target’s location, they make an identification decision on the target.   
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 The second part of the code is executed by only the UAS vehicle agent with an 

identification value equal to 1.  It has two main sections.  The first involves finding a 

target and moving to it.  The second involves making an identification decision if the 

UAS vehicle is at the target’s location.  The second case doesn’t require as much code as 

the first case because no de-confliction code is needed (since all UAS vehicles are flying 

in a swarm).  

 Next we will examine the code for the targets.  There are five different types of 

targets, but they all execute the same code.  The code for these agents is shown below. 

 

 

Figure 3.11 Orders for Potential Targets 
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 The code above is very simple.  The majority of it is keeping track of how many 

identifications have been made and documenting them.  Within the “alive loop” there are 

two main parts.  The first part executes when the agent has reached its goal.  It looks for 

the next location and moves to it.  The second part of the code is executed when a 

specified number of identifications for the target is reached (i.e. one for the first case, 

four for the second case).  This part of the code tallies the number of identifications for 

each type.  If 1/2 of the identifications are of the same type, the code documents that as a 

definite macro-level decision.  For Case 1, only one identification is needed, so there is 

always a definite macro-level identification decision made.  For Case 2, if two UAS 

vehicles identified the target as one thing, and two other UAS vehicles identified it as 

something else, the macro-level identification decision is “undetermined.”  The last part 

of the code writes the full array of identifications to a custom output file. 

 Some people may find the unconventional way of keeping track of identifications 

(i.e. having the targets keep track of them) controversial, but none of the processes are 

affected by this method and the coding is much more efficient.  The only concern in 

creating the code was that it may take extra time to process the record-keeping portion.  

However, the extra processing time was minimal and the timelines were unaffected since 

after making an identification, a UAS vehicle disassociates itself with the target and 

moves on.   

 There are a few other pieces of code that are important to mention.  The first is the 

way that the targets deploy.  The unit “Location_Generator” is code that was borrowed 
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from Captain Rucker’s thesis and modified to fit my own.  The TPL code for this unit is 

shown below. 

 

 

Figure 3.12 Orders for Location Generating Unit 

 

 The above code creates an array on the first run (i.e. if war->iteration = 1).  If the 

current run is the first run, the unit creates an array to document the randomly created 

deployment location and subsequent movements.  In this way, we minimize variability on 

all aspects except for those we wish to examine (i.e. identification times).  We also 

maintain an unbiased scenario by assigning all deployment locations and movements to 

match the first run which is randomly assigned.  However, this makes the results 

absolutely specific to the scenario.  If we allow the runs to mimic a single run that is 
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randomly assigned, there is the possibility that the single run may be an extreme point.  If 

this happens, all runs will be based off of extreme points.  Therefore, in presentation of 

results in the next section, we will be careful to caveat all results to the specific scenario 

we ran. 

 Another code-related point of interest is that all of our potential targets (SCUD 

types 1, 2, 3, decoy SCUDS, and friendly objects) are grouped under the same unit.  This 

is done for the sake of efficiency.  Whether we define the friendly objects as the child of 

a separate force or a red force makes no difference on how the combat model performs 

nor does it affect the output.    

 Lastly, it is important to distinguish our assumptions.  In this scenario we have 

made a couple of assumptions that are important to clarify.  The following are a list of 

our assumptions: 

1. There is no “human in the loop” process time.  When a UAS 

 vehicle is closer than 20 meters, it immediately makes an 

 identification decision.  This assumption was established to 

 minimize variability. 

2. Because both deploy locations and subsequent movements are 

 randomly chosen at the first iteration (and used for every other 

 run), the results are particularly specific to the scenario ran. 

3. ½ is an adequate threshold for macro-level identifications.  In 

 reality, the probability of correct identification should be taken into 

 consideration (since the UAS vehicles have different probabilities).   
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4. Defining the friendly forces as a sub-unit of the red forces makes 

 no difference in the scenario play nor the output.  Therefore, it is 

 ok (for the sake of efficiency) to put friendly forces under red 

 command.   

 

Conclusion 

 Most of the analysis occurs after the model is developed.  However, without 

adequate model development, the integrity of the results are questionable.  Special 

attention has been paid to this study to ensure that all behavior code and assumptions are 

rational.  This chapter describes in detail the logic and TPL code behind the major players 

in our scenario, and thus is crucial in understanding our intentions.   

 The next chapter will describe our output and evaluate any discrepancies we find 

between the output and what we expect to find.   
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IV. Analysis and Results 
 

Introduction 

 This chapter describes in detail the results of our analysis, including quantifiable 

data as well as qualitative scenario-specific output.  We ran a number of cases and will 

now go through the measures of performance to compare cases of interest.  We conclude 

the chapter with some insight concerning the output provided by the model. 

 Once our cases were determined, our first decision was how many runs would be 

sufficient to be confident in the integrity of the results we were getting.  Our initial guess 

at an adequate number of runs was 30.  We tested this hypothesis by running a scenario 

30 times and examining the output for normality.  We had several options for output 

values to do normality testing on (scenario processing time, target processing time, 

variation between input probability of correct identification and actual correct 

identification, etc).  We chose to test average scenario processing time (i.e. the time it 

took from time 0 to the time when the last target of the scenario was processed for 

normality.  However, because we had cases where targets deployed from different 

locations at different times depending on the run, we had to choose a case where the 

deployment locations and times were constant.  Case number four seemed like a viable 

candidate (case four was a “swarming” case with consistent target deployment locations, 

a small TAO, and 15 targets).  The output appeared approximately normal, leading us to 

conclude that 30 runs were sufficient for the purposes of our analysis.  The absence of 

run completions in the second and fifth bin is explained by the fact that we have reduced 

so much variance in the scenario, that a few critical events ultimately determine the 

difference between the first or sixth bin and the third or fourth bin. 
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Scenario completion time for case 4 (30 runs)
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Figure 4.1 Distribution of Scenario Completion Time for Case 4 (SCS15) 

  

 Another important issue to consider once our cases were determined is how fast it 

would take to run the cases.  Our scenario is both efficient and compact enough so that 

runs were completed quickly.  Our runs were completed using SEAS 3.7.1 on a custom 

desktop running an AMD Athlon 64 X2 Dual Core Processor 6000+ CPU with 2GB of 

RAM.   

 Our simplest case, Case 4 with settings (SCS15 – this follows column 

designations for cases in Tables 3.6 and 4.2), took approx 3 minutes and 57 seconds with 

graphics for a set of 30 runs.  However, for the sake of our analysis, graphics were only 

turned on during the development of our scenario.  Once we had our cases set up the way 
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we wanted, the runs were processed without graphics (total run time for all 30 

replications of approximately 10 seconds). 

 Our most complicated case, Case 7 with settings (IRL30), took approximately 4 

minutes and 49 seconds with graphics for 30 replications.  When graphics were turned 

off, it only took approximately 14 seconds for 30 replications.  

 Recall from the previous chapter that our run matrix is comprised of twelve 

separate cases and is as shown below. 

 

Table 4.2 Case Matrix 

CASE
Swarm/Independent 

Configuration
Random/Consistent 

Target Locations Small/Large TAO Number of Targets
1 S R S 15
2 S R L 30
3 S R L 15
4 S C S 15
5 S C L 30
6 I R S 15
7 I R L 30
8 I R L 15
9 I C S 15

10 I C L 30
11 S R S 30
12 I R S 30  

  

 There are four different options that make up this run matrix.  The first is whether 

or not a group of UAS vehicles moves in a swarm (i.e. a 4-vehicle formation that 

simultaneously tracks the same target at any given point in the scenario) or follow 

individual behaviors (i.e. track targets not already tracked by other UAS vehicles in the 

scenario).  Since we designed identification probabilities so that the swarming behavior 

would provide a more accurate identification decision, the trade-off is scenario 
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processing time.  Because the independent pair of UAS vehicles can process separate 

targets at the same time, we expect to see that the cases where UAS vehicles can process 

targets independently process targets significantly faster than the cases where the UAS 

vehicles move in a swarm. 

 The second option is whether or not target deployment locations and subsequent 

movement directions are consistent for all runs in the set or if they are independently 

chosen each time a different run is initiated.  The cases with constant target locations 

provide us with a better starting point for case analysis because the amount of variance 

between the runs is minimized.  However, this can be bad if the initial locations are 

biased one way or the other.  Therefore, runs are done with both to ensure that the values 

examined in the constant location cases are representative of values from the cases where 

each run is independent of the previous one.  

 The third option is how big the TAO is.  Recall from Chapter III that we have 

cases where the area of interest (AOI) is only the northern third of Iraq.  The other cases 

consist of a TAO roughly double the size (northern two-thirds of Iraq).  The purpose in 

varying this option is to examine what kind of an effect area has on processing time.  We 

expect to see processing time increase for the larger TAO since there is more area to 

cover.  More importantly though, we expect to see the differences in processing times get 

larger when the area increases due to an increased amount of stress on the swarming 

cases where one formation of vehicles is responsible for the whole area. 

 The fourth option is the number of targets.  One of the things we were worried 

about when setting up our scenario was that fifteen targets may not be enough to 

adequately stress the systems.  Therefore, we determined that we would use the number 
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of targets as another (in addition to TAO size) variable to show the influence on 

processing times.   

 

Overview of Analysis 

 The purpose of our study is to examine the relationship between identification 

accuracy and identification time when comparing independent vs. swarming behavior.  

One of the reasons we varied whether or not deployment locations and directions were 

constant through every replication or whether they were re-determined at the beginning 

of each replication was to establish that there was not a significant difference between the 

two values.  Ideally, we would like to use the cases with a consistent deployment location 

for the reduced variance, but the cases with a random location and direction for each run 

is useful to compare times to ensure non-biased initial locations for the constant 

deployment location cases.  The cases where deployment method is the only difference 

are the following pairs: {(1,4), (6,9), (7,10), (2,5)}.  Case 1 and case 4 are both swarming 

cases with a smaller TAO and 15 targets.  They differ in that case 1 uses consistent 

location/directions and case 4 uses random locations/directions for each target at the 

beginning of every replication.  The following table summarizes the output for both 

cases.   
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Table 4.3 Comparison of Random vs. Consistent SXS15 Cases 
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 We can create confidence intervals for both average target times and scenario 

times on each pair of cases to test whether or not the values are significantly different.  If 

the confidence interval contains the value zero, we can fail to conclude that the pair of 

cases are significantly different.  To calculate these values we will use a paired t test.  

The formula for calculating a paired T statistic is shown below where d-bar is the average 

of the differences between each value. 

 

 In our case, we have 30 differences because we have 30 runs.  SD is the standard 

deviation of the differences, and n is the number of runs 

 Using the above formula, the threshold for a 2-sided t statistic with an alpha of .10 

is 1.70.  We can calculate a 90% confidence interval using the formula below. 

 

 The results of the confidence interval calculations are shown below. 
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Table 4.4 Confidence Intervals for Random vs. Consistent SXS15 cases 

Lower Bound Upper Bound Result Lower Bound Upper Bound Result
S X S 15 -8.01540723 11.10875007 FTR -64.4719813 -2.39468539 REJ1 vs. 4

Case
Target Times Scenario Time

 

 

 Our conclusion is that the times for target identification may be the same, but the 

times for scenario completion are different.  Because we found a significant difference, 

we can go back to the scenario to look at the deployment locations for the constant case 

to see if a bias is obvious.  Below is a map showing the deployment locations for the 

constant cases. 

 

 

Figure 4.5 Distribution of Locations for all Consistent Cases 

 

 Keeping in mind, that this picture represents all random locations, and since this 

case (case 4) was a small TAO case, only the northern targets apply, the initial locations 
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do appear to be a little biased.  One influential factor that may explain the difference 

could be the direction of the target’s movements (especially when the satellites fly 

overhead and see them).  Regardless, our constant location case provides significantly 

different scenario completion times than the case where locations and directions are 

picked randomly.  However, we see that the confidence interval is not far from 

encompassing zero.  Therefore, we can conclude that the difference is due to scenario 

timing. 

 Case 6 and case 9 are both independent UAS vehicle cases with the smaller TAO 

and 15 targets.  Case 6 uses random location draws for each run.  For case 9, only the first 

run has random draws and every following run starts with the same locations and targets 

follow the same movements.  The following table summarizes the output for both cases.  

Another hypothesis test is done with the same null hypothesis for these cases. 

 

Table 4.6    Comparison of Random vs. Consistent Independent/Small/15 Cases 
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 The results of the paired t test are shown below. 
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Table 4.7    Confidence Intervals for Random vs. Consistent IXS15 Cases 

Lower Bound Upper Bound Result Lower Bound Upper Bound Result
I X S 15 -37.6109477 -23.8681456 REJ 66.93256526 104.2007681 REJ

Case
Target Times Scenario Time

6 vs. 9  

 

 The differences for these cases are more difficult to explain.  We notice that case 

6 has a lot lower values for target identification times, but higher times for scenario 

times.  This can be explained in that case 9 may have deployment times that have more 

variance, but end well before the deployment times for case 6. 

 The next two cases to compare for deployment method are cases 7 and 10.  These 

cases are identical in that they are independent UAS vehicle configurations in a large 

TAO with 30 targets.  Case 7 is a random case and case 10 is the consistent.  The 

following table summarizes the output for both cases. 

 

Table 4.8 Comparison of Random vs. Consistent IXL30 Cases 
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 The results for the t tests are shown below 
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Table 4.9    Confidence Intervals for Random vs. Consistent IXL30 Cases 

Lower Bound Upper Bound Result Lower Bound Upper Bound Result
I X L 30 25.94457758 46.92044652 REJ -67.2994431 19.49944307 FTR7 vs. 10

Case
Target Times Scenario Time

 

 

 This pair of runs has a very small difference in values.  The test results suggest 

that there is a significant difference in target identification times.  It does not conclude 

that there is a difference in scenario processing times.  We also see much longer times 

compared to the previous pair of runs (for cases 6 and 9) since this pair has both a larger 

TAO and more targets.   

 The last pair of scenarios to compare with regards to consistent vs. random 

deployment locations is cases 2 and 5.  These were swarming cases with a large TAO and 

30 targets.   

 

Table 4.10 Comparison of Random vs. Consistent SXL30 Cases 
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 The results of the hypothesis tests are shown below. 
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Table 4.11    Confidence Intervals for Random vs. Consistent SXL30 Cases 

Lower Bound Upper Bound Result Lower Bound Upper Bound Result
S X L 30 15.37073998 66.3060383 REJ -92.6965184 64.16318511 FTR2 vs. 5

Case
Target Times Scenario Time

 

 

 These results suggest that a significant difference exists in the target times, but not 

in scenario times.  This can be explained by deployment times potentially being more 

uniform for case 5 (the consistent case), but having later deployment times. 

 In summary, we fail to reject target times for one of the comparisons, and scenario 

times for two comparisons.   

 Looking at the deployment times for cases 4 and 9 provide insight into where the 

difference comes from.  Deployment times are calculated in the code as a random 

variable uniformly distributed between 0 and 1000.  To determine whether deployment 

times are unbiased, graphs of the deployment times and averages are examined.  The 

expected value of the output should be 500 minutes.  The graph for both cases is provided 

below. 
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Figure 4.12 Deployment Time Distributions for Cases 4 and 9 

  

 Both cases appear to be uniformly distributed.  The averages for the deployment 

times for the 15 and 30 targets are 498 and 531 respectively.  Both of these values are 

close to what we would expect the average value to be (500 minutes).  We hypothesized 

earlier that the deployment times may be later than expected, and the largest value we see 

is 934 minutes for both cases.  This is what we would expect for the 15 target cases, but 

approximately 30 minutes earlier than we expect to see from the 30 target case. 

 

Comparing Identification Statistics with Identification Probabilities  

 Because our testing cases (described in the previous chapter) did not show a 

significant difference between the expected output of identification accuracy (based on 

input values) and the actual output values, we concluded that our estimations based on 



 

59 
 

inputs were sufficient for analysis.  However, the results were reviewed to ensure nothing 

seemed out of the ordinary.  Those results are shown below. 

 

Table 4.13 Statistics for Correct Identification 

Case expected value 30 runs difference
1 0.82 0.847 0.027
2 0.82 0.837 0.017
3 0.82 0.796 0.024
4 0.82 0.818 0.002
5 0.82 0.833 0.013
6 0.75 0.780 0.030
7 0.75 0.778 0.028
8 0.75 0.776 0.026
9 0.75 0.791 0.041

10 0.75 0.793 0.043
11 0.82 0.838 0.018
12 0.75 0.778 0.028

probability of correct identification

 

 

 One interesting thing to note is that the cases with the individual UAS vehicles 

(cases 6-9) consistently yielded better results than was estimated (by an average 

difference of ~ 3.4%).  To see if there is a significant difference in the differences of the 

number of correct identifications between the individual cases and the swarming cases, 

we run a paired t test.  The results of the test are shown below. 

 

Table 4.14 Confidence Intervals for Differences in Biases for Correct 

Identification (Swarm vs. Independent) 

Lower Bound Upper Bound Test Result
Cases 1 and 6 -0.04 0.18 FTR
Cases 4 and 9 -0.04 0.18 FTR
Cases 3 and 8 -0.03 0.17 FTR
Cases 2 and 7 -0.02 0.16 FTR
Cases 5 and 10 -0.01 0.15 FTR
Cases 11 and 12 -0.03 0.17 FTR  
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 The results suggest that although the swarming cases seemed to be biased one 

way, the difference between the biases was not significant.  To re-check the swarming 

cases, we ran 100 runs on all of those cases.  The results are shown below. 

 

Table 4.15 Expected, 30 Run, and 100 Run Correct Identification Statistics 

Case expected value 30 runs 100 runs
1 0.82 0.85 0.82
2 0.82 0.84 0.83
3 0.82 0.80 0.81
4 0.82 0.82 0.82
5 0.82 0.83 0.83
6 0.75 0.78 0.78
7 0.75 0.78 0.78
8 0.75 0.78 0.80
9 0.75 0.79 0.78

10 0.75 0.79 0.80
11 0.82 0.84 0.83
12 0.75 0.78 0.78

probability of correct identification

 

 

 The results of the 100 runs support the idea that there is an existing bias in the 

swarming cases, but not in the individual cases (on average there is a bigger difference 

between the expected value and the 100 run output value for the swarming cases).  We 

predicted that one possible explanation for this is that the swarming cases process targets 

faster, meaning their identification from the satellites is passed to the UAS vehicle and an 

identification from the UAS vehicle was made based on information from the satellites 

instead of a perceived identification from the UAS vehicle.   However, the “threat hold” 

values were specifically set to keep this from happening.  Threat hold was set to 5 time 

steps (minutes) for UAS vehicles, meaning 5 minutes after the satellite passes the target 
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sighting to the UAS vehicle, the UAS vehicle has to re-acquire the target from either 

another satellite sighting or its local sensor.  The fact that the average target sightings 

were significantly smaller for the swarming cases supports this hypothesis, however the 

cases where we rejected that there was no difference were not significantly smaller than 

the others. 

 We test this hypothesis by re-running the scenarios with modified code with lower 

threat hold times.  The table below compares our old results with the new results (with 

modified code).   

 

 Table 4.16 Table of Old vs. New PID Output Statistics 

Case Lower Bound Upper Bound
Significantly 

Different
X R S 15 1 vs. 6 -0.03 0.17 NO
X C S 15 4 vs. 9 -0.05 0.19 NO
X R L 15 3 vs. 8 -0.05 0.19 NO
X R L 30 2 vs. 7 -0.01 0.15 NO
X C L 30 5 vs. 10 -0.03 0.17 NO
X R S 30 11 vs. 12 -0.01 0.15 NO  

 

 Running a t test on these results provides conclusions that better fit our 

expectations.  All values fit our test, and our expected value is closer to our actual 

average for correct identification for each case.   

 

Comparing Cases with Swarming vs. Independent UAS Vehicles 

 The following pairs of cases are identical with the exception of the UAS 

configuration (four swarming UAS vehicles vs. two independent UAS vehicles): 

{(1,6),(2,7),(3,8),(4,9),(5,10)}.   
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Table 4.17 Case List (Swarming vs. Independent) 
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I R S 15 6 4.33 76.59 351.71 828.00 1004.20 1073.00
S R L 30 2 7.60 415.97 2090.46 1420.00 1689.40 2474.00
I R L 30 7 5.78 172.17 1055.50 1024.00 1235.83 1470.00
S R L 15 3 8.90 187.99 839.90 980.00 1197.80 1568.00
I R L 15 8 5.07 116.48 501.17 968.00 1060.10 1152.00
S C S 15 4 4.86 109.40 392.81 1041.00 1087.50 1131.00
I C S 15 9 17.24 111.49 390.17 910.00 921.17 929.00
S C L 30 5 5.00 330.95 1931.61 1325.00 1652.93 2145.00
I C L 30 10 4.00 135.32 846.02 1062.00 1233.57 1403.00
S R S 30 11 6.78 229.12 1247.50 1190.00 1297.80 1410.00
I R S 30 12 3.64 94.80 458.68 980.00 1053.27 1119.00
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 We focus on the cases where the deployment locations are the same (i.e. 

{(4,9),(5,10)} because variance is reduced in those cases.  For all cases we see a 

difference in both the target identification time and scenario time between the swarm 

cases and the independent vehicle cases.  Only for the XCS15 target identification times 

is the average for the swarm smaller than the independent.  We can attribute this to the 

lack of stress (small area and few targets) on the competing systems, as the values are 

very close together.  We can perform a paired-t test on the data to confirm that is a 

significant difference.  The table below shows the confidence intervals associated with 

the statistics for the different combinations. 
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 Table 4.18     Confidence Intervals for Consistent Cases (Swarming vs. 

Independent) 

Lower Bound Upper Bound Result Lower Bound Upper Bound Result
X C S 15 -7.53 4.92 FTR 158.36 174.30 REJ
X C L 30 176.80 216.15 REJ 356.92 481.82 REJ5 vs. 10

4 vs. 9
Case

Target Times Scenario Time

 

  

 We conclude that there is a significant difference between the pairs of cases 

except for target times for the XCS15 case.  This is not unexpected, because that was the 

pair that was counter-intuitive, with the average swarming target identification time 

smaller than the average independent time.   

 To check for a difference in the rest of the cases (i.e. the cases where deployment 

locations were not consistent), we can perform paired t-tests.  The cases being considered 

are {(1,6),(2,7),(3,8),(11,12)}.  The results of the t-tests are shown below. 

 

Table 4.19 Confidence Intervals for Random Cases (Swarming vs. Independent) 

Lower Bound Upper Bound Result Lower Bound Upper Bound Result
X R S 15 23.16 38.80 REJ 18.18 76.49 REJ
X R L 30 176.59 225.17 REJ 364.65 493.35 REJ
X R L 15 99.63 168.81 REJ 57.89 157.24 REJ
X R S 30 120.23 149.38 REJ 256.70 316.90 REJ11 vs. 12

3 vs. 8
2 vs. 7
1 vs. 6
Case

Target Times Scenario Time

 

  

 The results of these tests also support our hypothesis that the individual 

configuration cases have significantly lower times than the swarming cases.  What’s 

interesting in these cases is that even the XRS15 cases (the ones that didn’t show a 

significant difference for consistent deployment locations) do show a significant 

difference in these pairs.   



 

64 
 

 

Comparing Scenarios with Small TAOs vs. Large TAOs 

 The following pairs are identical with the exception of the size of the TAO: 

{(1,3), (6,8),(11,2),(12,7)}.  The values for these pairs are shown below. 

 

Table 4.20 Case List of Small TAOs vs. Large TAOs 
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 As expected, the average times get larger when the size of the TAO increases.  As 

expected, the differences are much more obvious in the swarming UAS vehicle cases.  

This makes sense because the individual UAS vehicle cases have an advantage in that 

they can simultaneously process a scenario.  Calculating confidence intervals for all pairs 

yields the following results. 
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Table 4.21 Confidence Interval for Swarming cases (Small vs. Large TAOs) 

Lower Bound Upper Bound Result Lower Bound Upper Bound Result
S R X 15 -183.48 -117.45 REJ -174.91 -86.16 REJ
I R X 15 -59.11 -35.34 REJ -108.00 -32.60 REJ
S R X 30 -169.29 -112.00 REJ -362.32 -230.88 REJ
I R X 30 -84.39 -64.7460579 REJ -192.31 -116.49 REJ

2 vs. 11
7 vs. 12

6 vs. 8
1 vs. 3
Case

Target Times Scenario Time

 

  

 As expected, all pairs show significant differences, leading us to conclude that 

TAO size has a significant effect on both average time to identify a target and average 

time to complete a scenario. 

 

Comparing Scenarios with 15 Targets vs. 30 Targets 

 The following pairs are identical with the exception of the number of targets 

being deployed: {(11,1),(2,3),(12,6),(7,8)}.  The values for these pairs are shown below. 

 

Table 4.22 Case List of 15 vs. 30 Targets 
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 As expected, the more targets in a scenario, the longer it takes for the UAS 

vehicles to process the scenario.  However, it is important to remember that targets are 

deployed at a time randomly chosen between 0 and 1000 minutes from the beginning of 

the scenario.  Also as expected, the differences are much more apparent in the swarm 

case since the UAS vehicles are at a disadvantage in that they have to stick together.  The 

table below summarizes the confidence intervals for these comparisons. 

 

Table 4.23 Confidence Intervals for 15 vs. 30 Targets 

Lower Bound Upper Bound Result Lower Bound Upper Bound Result
S R S X 103.03 137.49 REJ 251.05 324.95 REJ
S R L X 63.51 157.37 REJ 391.53 516.61 REJ
I R S X 10.38 22.49 REJ 23.38 73.68 REJ
I R L X 29.76 57.80 REJ 98.50 166.76 REJ7 vs. 8

1 vs. 11

6 vs. 12
2 vs. 3

Case
Target Times Scenario Time

 

  

 As expected, we reject the null hypothesis that the swarm case is the same as the 

individual case using an alpha of .10.  

 

Overall Implications of Results 

 The main point of our analysis was to evaluate the tradeoffs between accuracy 

and scenario completion time (defined as how long it takes to identify all targets in an 

area).  Because we were only using target deployment differences for case-bias 

evaluation purposes, we are left with eight cases with random deployment locations 

(varying by UAS vehicle configuration, area size, and number of targets).  The following 

is a graph of scenario completion times using all cases.  The cases with consistent 
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deployment locations (4, 5, 9, and 10) are included in the graph providing point estimates 

to compare to the random location points. 
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Figure 4.24 Comparison of Scenario Completion Times for Different TAO Sizes / 

Number of Targets 

 

 The above graph demonstrates how the difference grows between the different 

UAS vehicle configurations depending on the scenario circumstances.  Recall that the 

probability of correct identification was 82% for the swarming cases and 75% for the 

individual cases.  At what point the tradeoff for these values is acceptable is a subjective 

call to be made by the decision-maker depending on the applicability of the scenario. 
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 The below graph demonstrates a similar comparison, but for average target 

identification times.  As with the graph above, all cases were used for these comparisons. 
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Figure 4.25 Comparison of Target Identification Times for Different TAO Sizes / 

Number of Targets 

 

 As with the previous graph, at which point the trade-off between time difference 

and identification accuracy is a subjective call to be made by the decision-maker. 

 Another important thing to understand when considering the difference in 

identification probabilities is that the swarming cases have an associated probability of 

“no identification” associated with them.  Because our decision rules dictated that a 

positive identification would only be made in cases where at least two of the four 
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vehicles’ identifications were the same, there was a possibility that either no two 

identifications were the same or that two were the same and the other two were the same.  

This should be taken into consideration when determining an acceptable level of trade-

off. 

 One last thing to consider is that although we went through great strides to reduce 

variability in our cases, ultimately satellite windows provided a huge part of the results.  

Being in the “right place” at the “right time” could be considered a significant 

contributing aspect, especially in a stochastic study such as this one.  Below is a graph of 

satellite windows.  It is important to keep in mind that having a satellite overhead means 

that the satellite field-of-view can see at least some part of the TAO.  These results are for 

the smaller TAO, for the larger TAO, the windows may be larger. 
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Figure 4.26 Satellite Windows Over 24 Hours (1440 Minutes)  
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 Notice that there are significant windows where satellites are not available (4 

windows of over 25 minutes).  As always, these are important aspects to consider when 

evaluating stochastic agent-based models.  
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V. Conclusion 

Overview 

 The intention of our research was to use an agent-based model (SEAS) to 

examine UAS configuration tradeoffs between accuracy and speed in a target-rich 

environment.  We were familiar with a previous study done by Captain Jeffrey Rucker 

that used UAS vehicles to examine SCUD hunting missions.  By using his warfile and 

modifying it to fit our needs, we saved a significant amount of effort.  Our study 

examines the benefits and drawbacks of configuring a swarm of UAS vehicles to identify 

a target vs. having the vehicles independently identify targets.  By examining how 

different environmental aspects (number of targets, size of theater) influenced the 

difference between the two configurations, we were able to quantify the advantages and 

disadvantages for several different situations.  This chapter concludes our research by 

reviewing the MOP data we collected, reviewing modeling issues and assumptions, and 

making suggestions for potential follow-on research. 

 

Output Comparisons 

 The list of things we wanted to examine can be found below: 

  1. The effect of random deployment locations every run vs.   
   constant deployment locations every run (to potentially   
   minimize variance). 
  2. Whether a significant difference exists between UAS vehicles in a  
   swarming behavior vs. an independent configuration. 
  3. Whether a significant difference exists when TAO size changes. 
  4. Whether a significant difference exists when number of targets  
   increases  
 
 A summary of our output results for times is shown below.  Whether or not a 

significant difference existed was determined using a 2-sided paired-t test with an alpha 
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of .10 with a run size of 30 for all cases.  All confidence interval differences are for the 

first setting minus the second (Random minus Consistent, Swarming minus Independent, 

Small minus Large, 15 minus 30).  

 

Table 5.1 Summary of Target/Scenario Time Results 

CASES
Lower 
Bound

Upper 
Bound

Significantly 
Different

Lower 
Bound

Upper 
Bound

Significantly 
Different

S X S 15 1 vs. 4 -8.02 11.11 NO -64.47 -2.39 YES
I X S 15 6 vs. 9 -37.61 -23.87 YES 66.93 104.20 YES
I X L 30 7 vs. 10 25.94 46.92 YES -67.30 19.50 NO
S X L 30 2 vs. 5 15.37 66.31 YES -92.70 64.16 NO
X C S 15 4 vs. 9 -7.53 4.92 NO 158.36 174.30 YES
X C L 30 5 vs. 10 176.80 216.15 YES 356.92 481.82 YES
X R S 15 1 vs. 6 23.16 38.80 YES 18.18 76.49 YES
X R L 30 2 vs. 7 176.59 225.17 YES 364.65 493.35 YES
X R L 15 3 vs. 8 99.63 168.81 YES 57.89 157.24 YES
X R S 30 11 vs. 12 120.23 149.38 YES 256.70 316.90 YES
S R X 15 1 vs. 3 -183.48 -117.45 YES -174.91 -86.16 YES
I R X 15 6 vs. 8 -59.11 -35.34 YES -108.00 -32.60 YES
S R X 30 11 vs. 2 -169.29 -112.00 YES -362.32 -230.88 YES
I R X 30 12 vs. 7 -84.39 -64.75 YES -192.31 -116.49 YES
S R S X 11 vs. 1 103.03 137.49 YES 251.05 324.95 YES
S R L X 2 vs. 3 63.51 157.37 YES 391.53 516.61 YES
I R S X 12 vs. 6 10.38 22.49 YES 22.38 73.68 YES
I R L X 7 vs. 8 29.76 57.80 YES 98.50 166.76 YES
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 Our first comparison was between cases where deployment location and 

subsequent movements of the targets were consistent between every run and cases where 

they were chosen randomly for every run.  Our tests suggest that some cases were biased 

(showing a statistical difference) and some weren’t.  To diagnose why we saw a 

significant difference between some cases, we examined the deployment locations for the 
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consistent cases and determined that they appeared random.  To further diagnose the 

problem, we examined deployment times for these cases and found they weren’t 

uniformly distributed as expected.  That explained why our results for a number of our 

consistent cases were significantly different. 

 Our second comparison was to determine whether there was a significant 

difference between swarming cases and independent cases.  We expected that there 

would be because two independent UAS vehicles could process two different targets 

simultaneously while four swarming vehicles would have to process the same target 

simultaneously.  Our output supports our hypothesis, as all differences were statistically 

significant and positive (suggesting that independent times were smaller than swarming 

times for both targets and scenario) except for consistent deployment in small TAO with 

15 targets which showed no significant difference.  These results also help quantify the 

difference in the two configurations for different scenario specifics.  As expected, the 

smallest difference was observed in the small TAO case with 15 targets and the largest 

difference in the large TAO with 30 targets.  This indirectly suggests that both larger 

TAOs and more targets increase the differences between scenario and target processing 

times (which we expect).   

 Our third comparison was a direct (as opposed to the previously indirect 

comparison) between large and small TAO sizes.  The results show that the differences in 

both target identification and scenario times between independent and swarming UAS 

vehicles becomes more apparent as area increases.  This was expected. 
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 Our last comparison was between cases of fifteen and thirty targets.  The results 

suggest that as the number of targets increase, the amount of time necessary to process 

these targets also increases.  These results were expected. 

 Overall the results provided a way to quantify the influence of certain factors on 

our scenario.  One interesting aspect of the results is that the difference in both scenario 

and target identification times is influenced more by TAO size than number of targets for 

the independent cases.  However, the swarming cases were influenced more by the 

number of targets than the size of the TAO.  This makes sense because the independent 

vehicles are better equipped to handle an increase in number of targets, whereas an 

increase in number of targets would stress the swarming vehicle cases. 

 We also evaluated the correct identification statistics for each case by comparing 

the difference in values to the difference in probabilities expected based on input.  Below 

are the confidence interval results of the paired-t test with none of the results different 

from what we would expect. 

 

Table 5.2 Summary of Identification Results 

Case Lower Bound Upper Bound
Significantly 

Different
X R S 15 1 vs. 6 -0.03 0.17 NO
X C S 15 4 vs. 9 -0.05 0.19 NO
X R L 15 3 vs. 8 -0.05 0.19 NO
X R L 30 2 vs. 7 -0.01 0.15 NO
X C L 30 5 vs. 10 -0.03 0.17 NO
X R S 30 11 vs. 12 -0.01 0.15 NO  
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Assumptions and Model Development 

 We made several assumptions in our study that are important to understand for 

our research.  The first assumption is that “human in the loop” is negligible as long as it 

is removed from all cases.  When a target is close enough to be detected by a UAS 

vehicle using it’s own sensor (20 meters), an identification decision is immediately made.  

This was done to minimize variability in the cases.  Realistically, there would be a delay 

between detection and identification.   

 Our second assumption is that for the consistent deployment location cases, the 

randomly chosen locations on the first run are adequately random to not bias the case to 

be better for either the swarming UAS configuration or the independent UAS 

configuration. 

 Our third assumption is that 1/2 of the four swarming vehicles is an adequate 

threshold for macro-level identification decisions.  Ideally the capability of each UAS 

vehicle would be considered and some kind of weighted formula would be used to make 

a decision on identification.  However, for our cases each swarming UAS vehicles had 

the same probability of correct identification. 

 Our fourth assumption concerns modeling decisions that don’t necessarily reflect 

reality, but don’t affect any results and therefore can be modeled differently for efficiency 

sake.  One example of this is considering “friendly” targets as part of the red force.  

Because we didn’t differentiate between different kinds of targets in our output analysis, 

it was acceptable for us to model all targets as children agents of the red force.  This 

made modeling much more efficient. 
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Recommendations for Future Research 

 Our warfile was created specifically for the cases we set up.  While some aspects 

are very easily modified to fit other cases (i.e. increasing the amount of targets, changing 

probabilities for identification, and changing the flight path of the UAS vehicle), other 

aspects that other users may be interested in using as a variable aren’t as easy to change 

(i.e. differentiating between friendly/enemy targets, adding different orders for UAS 

vehicles, etc).  For our purposes, the warfile was kept as efficient as possible.  It is robust 

enough for our purposes, but for future research may not be easy to modify. 

 Another aspect that may be expounded on is having the UAS vehicles have 

sensors of different types.  This would be more realistic, but would also require an 

extensive amount of additional code if the user wanted the swarming UAS vehicles to be 

able to share information and base micro-level identification decisions on previous 

identification decisions from other vehicles. 

 One last area that may be improved is making the identification procedures more 

accurate to real life.  In our scenario we found that some of our statistics for identification 

didn’t match the expected values based upon our inputs.  Through further inspection, we 

deduced that identification decisions from the satellites (which were perfect) were 

influencing UAS vehicle decisions if there wasn’t sufficient time between the last 

sighting by satellite and identification time of UAS vehicles.  The UAS vehicles were 

designed to have a threat hold of five minutes.  This value was set so that the UAS 

vehicles could make their own identification decisions after 5 minutes.  Any more and the 

satellites made the decisions for the targets.  Any less and UAS vehicles would lose more 

targets than was reasonable due to taking more than five minutes to arrive at the 
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perceived target location.  Ideally we would write code so that the satellites would pass 

along detections only (not identifications) to the UAS vehicles, who would use their own 

sensors for decision making.  However, we modeled the effect by setting the satellite 

sensor capability identical to the UAS vehicle (depending on case). 

 We have demonstrated in our research that SEAS (and agent-based modeling in 

general) is a very powerful tool in performing mission-level analysis.  Our model in 

particular demonstrates an ability to accurately represent an operation environment, while 

also being robust enough to serve many different interests.  With UAS being such a hot 

topic recently, there is no doubt that agent-based modeling can and will be beneficial in 

determining aspects of CONOPS. 
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Appendix A. List of Acronyms 

 

ABM  Agent-based Modeling 

ACC  Air Combat Command  

AOI  Area of Interest 

CONOPS Concept of Operations 

FOV  Field of View 

LTL  Local Target List 

MOE  Measure of Effectiveness 

MOP  Measure of Performance 

PD  Probability of Detection 

PID  Probability of Identification 

SEAS  System Effectiveness and Analysis Simulation 

TAO  Tactical Area of Operations 

TPL  Tactical Programming Language 

UAS  Unmanned Aircraft System 

UAV  Unmanned Aerial Vehicle 
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Appendix B. Blue Dart 

Evaluating UAS Employment Configurations Using an Agent Based Combat Model 
 
Capt. Joseph Van Kuiken 
Student / Air Force Institute of Technology 
joseph.vankuiken@afit.edu 
Word Count: 560 
Keywords:   simulation, combat modeling, Agent Based Modeling (ABM),         
Unmanned Aerial Vehicles (UAV), Unmanned Aircraft Systems (UAS) 
 
 
 Over the last few years, Unmanned Aircraft Systems (UAS) have proven 

themselves through the support provided in areas such as Iraq and Afghanistan.  Of 

particular interest to the US military is the aircrafts’ ability to loiter for hours at altitudes 

where they are safe from threats and still maintain the ability to attack ground targets 

when needed.  As the DoD develops new UAS capabilities and employment concepts, it 

will need to evaluate trade-offs such as target identification speed vs. identification 

accuracy in several UAS scenarios – a perfect application area for the use of Agent Based 

Modeling (ABM) as the combat modeling tool of choice (the Systems Effectiveness 

Analysis Simulation (SEAS) is an example).  For such an analysis, the UAS vehicles 

would be modeled as individual agents that interact with each other, with enemy agents, 

and with the environment by following a set of programmed rules based upon real world 

operational employment. 

 Some would argue that one of the most likely pursuits of the DoD is a swarm of 

smaller (perhaps independently less capable) unmanned aircraft to provide several 

independent identification “looks” to ultimately make a macro-level identification 

decision.  A study that evaluates the benefits and draw-backs to swarming UAS vehicles 

compared to independent vehicles would be of benefit to the DoD and can be effectively 

represented in an ABM through use of different sets of rules for different UAS 

configurations.  

 Independent identification assessments made by swarming UAS vehicles 

combined by the ground station to make an ultimate determination on the target’s type 

would ideally be more accurate than a single UAS vehicle (especially if the sensors 

mailto:joseph.vankuiken@afit.edu�
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equipped on the swarm were of different types).  This would be beneficial in scenarios 

where correct identification is important to scenario processing (i.e. when an attack is 

queued as a result of the identification).  However, independent UAS vehicles processing 

targets individually (less accurate than a swarm) could be considered better if a theater 

was large enough to the point that speed was more important than accuracy.  This 

configuration (independent non-swarming UAS vehicles) would be applicable in 

scenarios where targets might be more time-sensitive.  Both of these situations exist in 

today’s operations, and an analysis capability to help the commander decide which 

configuration is appropriate is important.   

  UAS vehicles provide many advantages to manned aircraft that are making high-

level decision makers re-look at how we play the game.  How we utilize these UAS 

vehicles will undoubtedly be important to our future military.  One of the biggest 

perceived controversies in future UAS identification is the scenario process speed vs. 

identification accuracy trade-off when deciding how to configure and utilize UAS 

vehicles.  Evaluation of these aspects is important when investment in one capability over 

another may result in significantly enhanced performance in  theater.  The DoD would 

benefit from having the capability to effectively evaluate many different competing 

capabilities and employment options in a timely manner, along with the ability to model 

anticipated behavior of future unmanned systems.  The use of an Agent Based combat 

model such as SEAS, provides such a tool.     
“Captain Joseph Van Kuiken is a student at the Air Force Institute of Technology.” 
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